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Abstract

Quantifying effect of slope length and steepness on prediction of soil erosion using the
Revised Universal Soil Loss Equation (RUSLE) has become very important. In this paper,
sequential indicator simulation successfully provided spatial prediction maps of these two
variables based on their spatial variability from a plot data set. Uncertainty from simulation
runs and semivariograms was studied to increase prediction precision. Uncertainty
propagation from slope length and steepness and model parameters to predicting
topographical factor LS in RUSLE was modelled using Fourier Amplitude Sensitivity Test
(FAST). Spatial variance partitioning was done and uncertainty sources were identified.

1. Introduction

To predict the average annual soil loss, the Revised Universal Soil Loss Equation (RUSLE)
has been widely used. This equation is a function of rainfall erosivity, soil erodibility, slope
length, slope steepness, cover management, and support practice factor (Renard et al., 1997).
The slope length factor L and steepness factor S is calculated using slope length and steepness
measurements in the field or estimates by a digital elevation model (DEM). The product of L
and S, called LS factor, measures the effect of topography on soil erosion. Soil loss arises as
slope length and steepness increases and is most sensitive to the LS factor (Benkobi et al.,
1994, Biesemans et al., 2000). Wang et al. (2000) also carried out spatial prediction of the LS
factor using spatial statistical methods and suggested that sequential indicator simulation was
the best method for spatially modeling this factor.

There are several methods for assessing the sources of uncertainty in models. They include
Monte Carlo methods, iterated fractional factorial design, Latin hyper-cube sampling, and
Taylor series. A good example where numerous sources of uncertainty in model predictions
were assessed is by Gertner et al. (1995). They used a second-order Taylor series to partition
the uncertainty of projected forest growth into numerous measurement, grouping, sampling
and function errors. Another example is the development and application of the Fourier
Amplitude Sensitivity Test (FAST) (Cukier et al., 1973, Rodriguez-Camino & Avissar, 1998)
for partitioning uncertainty.

Briefly presented in this paper are the results of a case study where spatial prediction of the
LS factor using sequential indicator simulation was used, the uncertainty propagation of slope
length and steepness to the LS factor was assessed, and techniques to spatially reduce
uncertainty were employed. The contributions of these variables and their model parameters
to uncertainty of the LS factor were spatially quantified by variance partitioning using FAST.

2. Data set and topographic factors

The study area of 87,890 hectares is located in east Texas. Most slopes are in the 2 to 5
percent range with some slopes that are over 45 percent. The landscape consists of a gently
rolling plateau. Surface water drains mostly from west to east. In 1989, 219 field plots were
sampled for vegetation and for monitoring soil erosion. Each plot was 100 m by 6m transect.
Slope length (A) in meters was measured as distance of runoff travels between the points of
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origin and deposition, and slope steepness () in percent (Tazik et al., 1992). The factors L
and S were derived (Moore and Wilson, 1992) as follows:

a,Sinf +a, Tanf <0.09
S=<a,Sinfi—a, Tanf > 0.09 (1)
a,Sin“ f +a, A<dm
L=/22.13 0 | F= (Sinf810.0896) /(a,Sin® B +a,) @
F=0 When A<4m

3. Simulation and uncertainty analysis

Spatial variability of slope length and steepness for the data set was first derived and fitted
using standardization semivariograms and spherical, exponential, Gaussian and power
models. The best model was selected. Sequential indicator simulation (Deutsch and Journel,
1998) was then applied to produce prediction and variance maps of the variables. The
prediction maps of LS factor was obtained using Egs. (1) and (2). FAST was used to partition
of variance of prediction maps of slope length and steepness. The sources of uncertainty that
were accounted for were slope length, steepness, seven parameters in Egs. (1)-(2), and
measurement errors. The components were assumed independent. _

Briefly, let a study area be a grid of N nodes, and {Z(w’;), j = 1,...,N} be a set of random
variables at N locations. The key of sequential indicator simulation is to generate M joint
realizations of these N random variables conditional to the data set (Goovaerts, 1997). A
continuous variable was first subdivided into K+1 intervals by defining K cutoff values. The
data were coded into indicators O or 1. A random path visiting nodes was then set. At each
node, the K conditional cumulative density function values were determined given the n
original data and all simulated values using a kriging method. A value was drawn from the
conditional cumulative density function, becoming a conditional datum. This step was
repeated until N nodes were visited to obtain a realization. The overall process was repeated
M times with possibly different paths, which led to M realizations providing a quantitative
measure of spatial uncertainty. The effect from the number of realizations and the number of
cutoff values related to number of semivariograms on outputs was evaluated.

Variance contribution of input components was assessed using a partial variance technique
based on FAST (Cukier et al., 1973). This was done as part of the sequential indicator
simulation on a pixel by pixel bases. Model variance and partial variances contributed by a
specific component were computed using Fourier coefficients derived based on the principle
of Fourier series and the distribution of components. In our FAST, the distribution of
components was determined using different information. The distribution of slope length and
steepness at each pixel was then simulated. The distribution of the model parameters was
assumed normal distributed. The mean and standard errors of the parameters are listed in
Table 1.

Table 1. The model parameters and their distributions

Component a, a, a, a, as ag a,
Mean 10.8 0.03 16.8 0.50 3.0 0.8 0.56
Standard error 1.08 0.003 1.68 0.05 0.3 0.08 0.056
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4. Results

In the left of Fig. 1 are the plot locations and spatial distribution of data for slope steepness,
length and LS factor. The steepness values varied from 0 to 56% with most of them less than
5%. Larger values were mainly at the west, southwest and east of the case study area. The
length values had a range of 0 to 225m with most of them less than 40m. Larger values were
distributed at many small areas such as along the north and northeast boundaries of the case
study area. The LS factor has a similar spatial distribution as slope steepness.

Steepness Slope sleepness
: g 2, 025+ 3 models 9 models
. ot
35-45 =]
45-6 g
. 6-8 N = 21
. . 8-56 ] $
Slope length Slope length 5 151 v "
o 0-20 arlances of steepness
: 2035 g 5 models
. 35-45 %5 14 - 5
45 -55 © F_15-10
55 - 65 3 10 - 15
r 65 - 225 g | 15 - 25
‘ LS factor . 05 25-50
LS factor 0-0.3 5 50-152
" 0.3-05 > 7 models No Data
0'5 . O’G O T T T T 1
. . N
0.6-0.8
0.8-1 0 20 40 60 &0 100
1

A

Figure 1, Plot locations and field data (left), simulation variance vs. number of realizations
(center), and variance images vs. number of semivariograms used (right).

-7z Nurrber of realizatiors

Table 2 lists the parameters of standardized indicator semivariograms fit using spherical
model for slope steepness and length. Seven indicators were obtained, and for each of
indicators the probability was calculated and a semivariogram was developed. The
semivariograms were used for the simulation.

In the center of Fig. 1 are the variances of mean predicted values for slope steepness. The
variance due to simulation became stable after S00 realizations (runs). For all simulations, 500
simulation runs were used. In the right of Fig. 1 are the prediction variance images vs. the
number of the used semivariograms. Three, five, seven and nine semivariograms (models)
were evaluated. With three and five semivariograms, most of the pixel variances in the images
were larger than 40, and the spatial distribution of the variances fairly even for both variance
images. With seven and nine semivariograms, the pixel variances decreased rapidly and most
of them were less than 15, and the spatial distribution of the variances were not even for both
variance images. At the areas with large spatial variability of slope steepness, the prediction
variances were high and otherwise low. In addition, the spatial distributions of the uncertainty
were similar to that of slope steepness measurements.

Table 2, The modelled omni-directional standardized indicator semivariograms y(h).

y(h) =co+¢[1.5ha-0.5 (h/a)3] if h <= a, and ¢y + ¢, otherwise, h=distance, c=nugget, ¢;=sill, a=range.
Slope steepness Slope length

Indicator | Probability | a C Co Indicator | Probability a C; Co
0.5 0.046 2082 1.00 | 0.00 7.0 0.050 2500 0.80 | 0.20
1.0 0.196 3067 0.95 | 0.05 10.0 0.137 3000 0.70 | 0.30
2.0 0.361 2500 0.20 | 0.80 23.0 0.420 3000 0.20 | 0.80
3.0 0.580 2877 0.11 | 0.89 30.0 0.511 3000 0.60 | 0.40
4.0 0.721 4000 0.15 | 0.85 40.0 0.694 1835 0.43 | 0.57
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7.0 0.872 15000 | 0.00 | 1.00 70.0 0.849 4000 0.20 | 0.80

12.0 0.950 4000 0.50 | 0.50 100.0 0.977 15000 | 0.00 | 1.00

The prediction and variance maps of slope steepness and length based on 500 runs and seven
semivariograms are shown in the left of Fig. 2. With these maps, the LS prediction map was
obtained using Eqgs. (1) and (2) and its variance map by modelling the uncertainty propagation
from slope steepness and length using the FAST technique. The spatial variability of
predicted values were very similar to that of the corresponding variables in the left and centre
of Fig. 1. That is, high spatial variability corresponded to large prediction variance.

The relative contribution to uncertainty to prediction of LS due to the parameters, slope length
and steepness are show in the right of Fig 2. Overall, the variance contribution from the
parameters and slope length were very small, less than 0.03 and 0.22 respectively. Out of the
total variance, slope steepness accounted to over 75% of the variability. The data locations
had zero contribution because the simulation held data values at the sampling locations.

Steepness_E  Steopness estimale  gigepnags y  Steepness variance Parameters_C
Out - [ JOut o Parameters Contribution
0-2 Jo-s i
2-35 ™15-10 P
35-45 10-15 o
45-6 15-26
. 6-8 Bl 25 - 50
8-58 50- 152
No Data [} No Data
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Length_E Slope length estimate Slope length variance °
Out Out
0-20 N 0-500
2035 500 - 950
% 35-45 0 - 1050
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out 0-01 . .
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1-11.72 1-5 . No Data
No Data

No Data

Figure 2, Prediction (left) and variance maps (center) of slope steepness, length and LS factor;
and relative variance contributions of input components (right).

In the left of Fig. 3 is diagonal profile across the entire case study area of variance
contributions of input components including slope steepness, length and the parameters. The
profile had a high peak, implying high uncertainty corresponding to large spatial variability of
slope steepness and LS factor at the south-east of the case study area. The variance profile
shows that slope steepness resulted in the largest uncertainty, and the slope length and
parameters cause a very small part of the uncertainty. The feature is further shown in the right
of Fig. 3 for the whole area. The total variance and the variances propagated from the input
components increased as the LS estimates (predictions) did. The sensitivity of the LS factor to
the components was also analysed using the field data set. The measurement errors of slope
steepness and length were evaluated. For example, when measurement errors of slope
steepness and length were assumed to be 10% of their means; the percentages in variance
contribution from slope steepness, length, measurement errors, and the model parameters
respectively are 78.8%, 15.9%, 0.2%, 2.2%, and 2.9%. The variance of LS factor is still
mainly from slope steepness.
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Figure 3, Diagonal profile of variance contributions of the input components (left) and their
variance contributions varying with increase of LS estimate for the whole area (right).

5. Conclusion

Sequential indicator simulation successfully produced spatial prediction maps of the slope
length, steepness and LS factor with variance images for RUSLE to predict soil loss.
Reducing the prediction uncertainty depended greatly on the techniques in simulation. The
variance partitioning suggested that the FAST was a powerful tool. The slope steepness
contributed the largest uncertainty to prediction of LS factor, then slope length. The
contribution by all the model parameters and measurement errors was very small.
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